100312 Introductory Complex Analysis

Course offering details

Instructors: Prof. Dr. Dierk Schleicher

Type: Lecture

Org-unit:

Course Name Abbreviation: ComplexAnal

Hours per week: 3

Credits: 7.50

Min. | Max. participants: - | -

Partial Grades:
Final Exam

Official Course Description:
This course introduces the theory of functions of one complex variable. It centers around the notion of complex differentiability and its various equivalent characterizations. Unlike differentiability for real functions, complex differentiability is a very strong property; for example it implies that the function is differentiable infinitely often and that it is represented by its Taylor series in a neighborhood of every point in its domain of definition. This results in a very nice and elegant theory that is used in many areas of mathematics.
Topics include holomorphic functions, Cauchy integral theorem and formula, Liouville's theorem, fundamental theorem of algebra, isolated singularities and Laurent series, analytic continuation and monodromy theorem, residue theorem, Riemann mapping theorem. Possible further topics are elliptic and modular functions, the Riemann zeta function, introduction to Riemann surfaces.

Literature
Primary Text
Required Reading (To view a list click a category.)
Recommended Reading (To view a list click a category.)
Appointments
Date From To Room Instructors
1 Wed, 2. Sep. 2009 08:15 09:30 East Hall 4 Prof. Dr. Dierk Schleicher
2 Mon, 7. Sep. 2009 09:45 11:00 East Hall 4 Prof. Dr. Dierk Schleicher
3 Wed, 9. Sep. 2009 08:15 09:30 East Hall 4 Prof. Dr. Dierk Schleicher
4 Mon, 14. Sep. 2009 09:45 11:00 East Hall 4 Prof. Dr. Dierk Schleicher
5 Wed, 16. Sep. 2009 08:15 09:30 East Hall 4 Prof. Dr. Dierk Schleicher
6 Mon, 21. Sep. 2009 09:45 11:00 East Hall 4 Prof. Dr. Dierk Schleicher
7 Wed, 23. Sep. 2009 08:15 09:30 East Hall 4 Prof. Dr. Dierk Schleicher
8 Mon, 28. Sep. 2009 09:45 11:00 East Hall 4 Prof. Dr. Dierk Schleicher
9 Wed, 30. Sep. 2009 08:15 09:30 East Hall 4 Prof. Dr. Dierk Schleicher
10 Mon, 5. Oct. 2009 09:45 11:00 East Hall 4 Prof. Dr. Dierk Schleicher
11 Wed, 7. Oct. 2009 08:15 09:30 East Hall 4 Prof. Dr. Dierk Schleicher
12 Wed, 14. Oct. 2009 08:15 09:30 East Hall 4 Prof. Dr. Dierk Schleicher
13 Mon, 19. Oct. 2009 09:45 11:00 East Hall 4 Prof. Dr. Dierk Schleicher
14 Wed, 21. Oct. 2009 08:15 09:30 East Hall 4 Prof. Dr. Dierk Schleicher
15 Mon, 26. Oct. 2009 09:45 11:00 East Hall 4 Prof. Dr. Dierk Schleicher
16 Wed, 28. Oct. 2009 08:15 09:30 East Hall 4 Prof. Dr. Dierk Schleicher
17 Mon, 2. Nov. 2009 09:45 11:00 East Hall 4 Prof. Dr. Dierk Schleicher
18 Wed, 4. Nov. 2009 08:15 09:30 East Hall 4 Prof. Dr. Dierk Schleicher
19 Mon, 9. Nov. 2009 09:45 11:00 East Hall 4 Prof. Dr. Dierk Schleicher
20 Wed, 11. Nov. 2009 08:15 09:30 East Hall 4 Prof. Dr. Dierk Schleicher
21 Mon, 16. Nov. 2009 09:45 11:00 East Hall 4 Prof. Dr. Dierk Schleicher
22 Wed, 18. Nov. 2009 08:15 09:30 East Hall 4 Prof. Dr. Dierk Schleicher
23 Mon, 23. Nov. 2009 09:45 11:00 East Hall 4 Prof. Dr. Dierk Schleicher
24 Wed, 25. Nov. 2009 08:15 09:30 East Hall 4 Prof. Dr. Dierk Schleicher
25 Mon, 30. Nov. 2009 09:45 11:00 East Hall 4 Prof. Dr. Dierk Schleicher
26 Wed, 2. Dec. 2009 08:15 09:30 East Hall 4 Prof. Dr. Dierk Schleicher
27 Mon, 7. Dec. 2009 09:45 11:00 East Hall 4 Prof. Dr. Dierk Schleicher
28 Fri, 18. Dec. 2009 09:00 11:00 East Hall 4 Prof. Dr. Dierk Schleicher
Course specific exams
Description Date Instructors Mandatory
1. Final Exam Time tbd No
Contained in course catalogues
Course catalogue
Course Catalogue > School of Engineering and Science > Undergraduate Programs > Mathematics
Class Session Overview
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
Instructors
Prof. Dr. Dierk Schleicher